Dihybrid Cross Worksheet

1. Set up a punnett square using the following information:
 - Dominant allele for tall plants = D
 - Recessive allele for dwarf plants = d
 - Dominant allele for purple flowers = W
 - Recessive allele for white flowers = w
 - Cross a homozygous dominant parent (DDWW) with a homozygous recessive parent (ddww)

<table>
<thead>
<tr>
<th>Dw</th>
<th>Dw</th>
<th>Dw</th>
<th>Dw</th>
<th>Dw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dw</td>
<td>DwWw</td>
<td>DwWw</td>
<td>DwWw</td>
<td>DwWw</td>
</tr>
</tbody>
</table>

 All will be DwWw

2. Using the punnett square in question #1:
 a. What is the probability of producing tall plants with purple flowers? 100% or 16/16
 Possible genotype(s)? DdWw
 b. What is the probability of producing dwarf plants with white flowers? 0%
 Possible genotype(s)? None
 c. What is the probability of producing tall plants with white flowers? 0%
 Possible genotype(s)? None
 d. What is the probability of producing dwarf plants with purple flowers? 0%
 Possible genotype(s)? None

3. Set up a punnett square using the following information:
 - Dominant allele for black fur in guinea pigs = B
 - Recessive allele for white fur in guinea pigs = b
 - Dominant allele for rough fur in guinea pigs = R
 - Recessive allele for smooth fur in guinea pigs = r
 - Cross a heterozygous parent (BbRr) with a heterozygous parent (BbRr)

<table>
<thead>
<tr>
<th>BR</th>
<th>Br</th>
<th>br</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>BBRr</td>
<td>BBrR</td>
<td>BbRR</td>
</tr>
</tbody>
</table>

 BbRr x BbRr

 4 possible outcomes for each gamete:
 1. BR
 2. Bb
 3. Br
 4. br

4. Using the punnett square in question #3:
 a. What is the probability of producing guinea pigs with black, rough fur? 9/16
 Possible genotype(s)? BbRR
 b. What is the probability of producing guinea pigs with black, smooth fur? 3/16
 Possible genotype(s)? BbRr
 c. What is the probability of producing guinea pigs with white, rough fur? 3/16
 Possible genotype(s)? bbrR
 d. What is the probability of producing guinea pigs with white, smooth fur? 1/16
 Possible genotype(s)? bbrr
5. Set up a punnett square using the following information:
- Dominant allele for purple corn kernels = R
- Recessive allele for yellow corn kernels = r
- Dominant allele for starchy kernels = T
- Recessive allele for sweet kernels = t
- Cross a homozygous dominate parent with a homozygous recessive parent

<table>
<thead>
<tr>
<th></th>
<th>RT</th>
<th>RT</th>
<th>RT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>n+</td>
<td>nT</td>
<td>nT</td>
<td>nT</td>
<td>nT</td>
</tr>
<tr>
<td>nT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100%, -> RrTt Heterozygous

6. Using the punnett square in question #5:
 a. What is the probability of producing purple, starchy corn kernels?
 100%
 Possible genotype(s): RrTt
 b. What is the probability of producing yellow, starchy corn kernels?
 0%
 Possible genotype(s): None
 c. What is the probability of producing purple, sweet corn kernels?
 0%
 Possible genotype(s): None
 d. What is the probability of producing yellow, sweet corn kernels?
 0%
 Possible genotype(s): None

7. Set up a punnett square using the following information:
- Dominant allele for normal coat color in wolves = N
- Recessive allele for black coat color in wolves = n
- Dominant allele for brown eyes = B
- Recessive allele for blue eyes = b
- Cross a heterozygous parent with a heterozygous parent

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>Nb</th>
<th>nB</th>
<th>nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Using the punnett square in question #7:
 a. What is the probability of producing a wolf with a normal coat color with brown eyes?
 9/16
 Possible genotype(s): NNBb, NnBb, NNBb, NnBb
 b. What is the probability of producing a wolf with a normal coat color with blue eyes?
 3/16
 Possible genotype(s): NnBB, NnBB
 c. What is the probability of producing a wolf with a black coat with brown eyes?
 3/16
 Possible genotype(s): nnbb
 d. What is the probability of producing a wolf with a black coat with blue eyes?
 1/16
 Possible genotype(s): nnbb
#9

a) Dominant - Tall, Axial
Recessive - Short, Terminal

b) Tall + Terminal × Short + Axial
P: TTaa × ttAA

F₁: Tall + Axial
 Tt Aa

c) TtAa × TtAa

F₂: 9:3:3:1 Ratio
- 9 Tall + Axial (9/16) T_ A_
- 3 Tall + Terminal (3/16) T_ aq
- 3 Short + Axial (3/16) tt A_
- 1 Short + Terminal (1/16) ttaa

#10

A_ curly aa brown

a)
 p) aa × Aa
 Litter #1
 f₁) 3 Aa
 2 aa

 Litter #2
 4 aa
 2 Aa

b)
 ♀ aa ♀ aa
 1/2 × 1/2 × 1/2 × 1/2 = 1/16
11

Woman ♀ Aatt x aaTt ♂ Husband

4 Possible Genotypes

AaTt
Aatt
aaTt
aatt

12

a) HHRR x hhrr
 all F₁ - HhRr
 $F₂$ - 9:3:3:1 Ratio
 9 H₁R₁
 3 H₁rr
 3 hhR₁
 1 hhrr

b) hhRR x Hhrr
 all F₁ - HhRr
 $F₂$ - Same as part A

(c) p: hhrr x ?
 $F₁$: 2 H₁R₁
 2 H₁rr
 1 H₁rr
 $♂$ Must be HhRr

Possible genotypes (4)
P: hhrr x HhRr

$F₁$: HhRr hhRr
 Hhrr hhrr