CHAPTER 3- Water Unique Properties of Water Necessary for Living Organisms

- Water facts:
- 3/4 of earth is water
- \cdot 98% of water is in liquid form
- Makes up 50-95% of the weight of any living things

Water = only common substance in the natural environment that exist in all of the three states of matter - solid, liquid, & gas

Water molecule = NEUTRAL in charge and POLAR COVALENT

<u>COVALENT</u> bonds between hydrogen and oxygen atoms result in uneven sharing of electrons (hydrogen atoms are slightly positive/oxygen area is slightly negative) making molecule POLAR

POLAR - molecule has an uneven pattern of electric charge

- Results in hydrogen bonding between water molecules
- Polarity contributes to emergent properties of water

<u>HYDROGEN BONDS</u> can form between any hydrogen atom that is covalently bonded to an atom that has a strong attraction for electrons

- Each water molecule can form a max. of 4 hydrogen bonds with 4 other water molecules
- Single hydrogen bond is weaker than single covalent/ionic bond
- Groups of hydrogen bonds are very strong
- Responsible for the many EMERGENT PROPERTIES of water

WATER IS "UNIVERSAL" SOLVENT- "like dissolves like"

- Provides a medium in which other molecules can interact
- Separates ionic substances into ions
- Dissolves many other polar substances
- SOLUTION: uniform mixture of molecules of 2 or more substances
- SOLVENT: substance present in greatest amount
- SOLUTE: substance present in lesser amounts
 - (EX: Water = solvent; Koolaid powder/sugar = solutes; Kool-aid = solution)

<u>HYDROPHILIC</u> = "water loving" molecules- polar molecules that dissolve in water Ex; sugars; DNA; proteins <u>HYDROPHOBIC</u> = "water fearing" molecules- nonpolar molecules that cluster in water Ex: fats; Hydrophobic exclusion = "oil and water don't mix"

- Forces nonpolar molecules to associate together EX: phospholipids form bilayers for cell membranes
- Shapes molecules with nonpolar regions EX: 3D structure of proteins

• Forms important interfaces with non-polar substances EX: Cell membranes act as barrier to separate internal/external AMPHIPATHIC molecules have BOTH polar and nonpolar regions

Ex: phospholipids (polar head/non polar tails)

<u>COHESION</u> - Water molecules 'stick to each other' (due to hydrogen bonding) • Makes water act as if it has invisible "skin"

- Causes SURFACE TENSION (how difficult it is to break surface)
- EX: Water droplets bead up; water striders can "walk on water"; skipping rocks on a pond

<u>ADHESION</u>- "Water molecules stick to other substances" Ex: meniscus in graduated cylinder; wet microscope slides stick together

<u>CAPILLARY ACTION</u>- movement of liquid through a narrow passage Result of *cohesion* of water molecules to each other and *adhesion* to another surface

EX: drinking straw; siphon; paper towel wicking;

Allows transport of water against gravity from roots to leaves

Elizabeth Morales

- Density = mass of the material in a given volume
- Density of liquids increases as temp goes down so most substances are MORE dense than as solids than as liquids
- Water molecules move slowly and come close together so every molecule forms 4 hydrogen bonds

30° 40° 50° 60° ICE COVER	<u>SOICE IS LESS DENSE THAN LIQUID WATER</u>
-9 ft	Hydrogen bonds keep molecules "at arm's length" when freezing so ice floats (protects aquatic ecosystems)
-15 ft	
—21 ft	EX: Insulation of bodies of water by floating ice lakes freeze from top down; allows living things to survive in winter when lake/pond freezes
-27 ft	

HEAT:

- Kinetic energy = energy of motion
- Heat = total amount of energy in a system
- $\boldsymbol{\cdot} \text{Temperature}$ = measure of the average kinetic energy of in molecules
- EX: Swimmer in cold lake has a higher *temperature* than the water, but the lake contains more *heat* because of its volume. • calorie = the amount of heat needed to raise the temperature of 1 g water by 1°C.;
- Energy in food measured with <u>C</u>alorie (= kilocalorie) 1000 calories

<u>HIGH SPECIFIC HEAT</u> - amount of heat a substance needs for a given increase of temperature (hydrogen bonding-restricts movement)

- Takes a lot of energy to raise 1 g of water by 1° C because must break Hydrogen bonds
- \cdot Liquid H_2O can absorb large amounts of heat with small changes in temperature
- $\boldsymbol{\cdot}$ Heats up more slowly and retains heat longer than surroundings
 - EX: Constancy of temperature for organisms (homeostasis)

HIGH HEAT OF VAPORIZATION-

• Takes a lot of energy to convert liquid H2O into vapor (hydrogen bonding-restricts movement)

- Vaporization (evaporation): change from liquid to gas; Molecules of liquid escape and enter air
- Evaporation of water produces cooling effect

EX: Some organisms sweat/pant to cool off when hot (EVAPORATIVE COOLING)

pH = -log 10 [H+]	[H+] × [OH-] = 10 ⁻¹⁴	
If [H ⁺] = 1 X 10 ⁻⁷	If [H⁺] = 1 X 10 ⁻⁹ then [OH⁻} = 10 ⁻⁵	
then pH=7	pH = 9 pOH = 5	

DISSOCIATION OF WATER MOLECULES- come apart and form charged ions

 $H_2O \dashrightarrow H^+ + OH^-$ (ionization of water) $H_3O^+ = Hydronium ion$

1 out of 554,000,000 water molecules dissociates at equilibrium in pure water at $25^{\circ}C$ [H+] = [OH-] = 1.0×10^{-7} M pH = 7 neutral

<u>CARBONIC ACID - BICARBONATE BUFFER SYSTEM</u> Most important buffer for maintaining acid-base balance in the blood

BUFFERS = weak acids or weak bases that act by combining reversibly with H⁺

- Minimize changes in the concentrations of H⁺ and OH⁻
- Act as reservoirs for H⁺
- \cdot Can donate H⁺ to solutions when concentration falls
- \cdot Can remove H $^{\cdot}$ from solutions when concentration increases
- Control chemical reactions
- Maintain homeostasis

BICARBONATE BUFFER SYSTEM IN BLOOD - Major buffer system in blood

Maintains blood pH between 7.38 and 7.42

- HCO3⁻ = Bicarbonate (weak base)
- H₂CO₃ = Carbonic acid (weak acid)
- $\label{eq:hardenergy} \bullet \text{ are in equilibrium } \quad H_2O + CO_2 \leftarrow \rightarrow H_2CO_3 \leftarrow \rightarrow HCO_3^- + H^*$

ACTION	EFFECT	BUFFER'S RESPONSE
 Strenuous exercise Fatty acid metabolism Acidic drug overdose (aspirin) 	INCREASE IN ['H ⁺] DECREASE pH	Equilibrium shifts to left H ₂ O + CO ₂ \leftarrow H ₂ CO ₃ \leftarrow HCO ₃ ⁻ + H ⁺
 Hyperventilation 	REMOVE CO2	

BODY ORGANS HELP MAINTAIN BALANCE TOO:

• Brain signals lungs to breathe more deeply and slowly \rightarrow removes more CO₂ to raise pH

• Kidneys remove HCO₃⁻ causes shift to right and pH decreases (H⁺ increases)

TREATMENT FOR HYPERVENTILATION

• Breathe into paper bag \rightarrow increases CO₂ and shifts equilibrium to right

TREATMENT FOR ACIDOSIS

Patients given HCO_3^- causes shift to left and pH increases (H⁺ decreases)